Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
)e main goal of any data storage model on the cloud is accessing data in an easy way without risking its security. A security consideration is a major aspect in any cloud data storage model to provide safety and efficiency. In this paper, we propose a secure data protection model over the cloud. )e proposed model presents a solution to some security issues of cloud such as data protection from any violations and protection from a fake authorized identity user, which adversely affects the security of the cloud. )is paper includes multiple issues and challenges with cloud computing that impairs security and privacy of data. It presents the threats and attacks that affect data residing in the cloud. Our proposed model provides the benefits and effectiveness of security in cloud computing such as enhancement of the encryption of data in the cloud. It provides security and scalability of data sharing for users on the cloud computing. Our model achieves the security functions over cloud computing such as identification and authentication, authorization, and encryption. Also, this model protects the system from any fake data owner who enters malicious information that may destroy the main goal of cloud services. We develop the one-time password (OTP) as a logging technique and uploading technique to protect users and data owners from any fake unauthorized access to the cloud. We implement our model using a simulation of the model called Next Generation Secure Cloud Server (NG-Cloud). )ese results increase the security protection techniques for end user and data owner from fake user and fake data owner in the cloud....
Artificial Intelligence (AI) is the revolutionary paradigm to empower sixth generation (6G) edge computing based e-healthcare for everyone. Thus, this research aims to promote an AI-based cost-effective and efficient healthcare application. The cyber physical system (CPS) is a key player in the internet world where humans and their personal devices such as cell phones, laptops, wearables, etc., facilitate the healthcare environment. The data extracting, examining and monitoring strategies from sensors and actuators in the entire medical landscape are facilitated by cloud-enabled technologies for absorbing and accepting the entire emerging wave of revolution. The efficient and accurate examination of voluminous data from the sensor devices poses restrictions in terms of bandwidth, delay and energy. Due to the heterogeneous nature of the Internet of Medical Things (IoMT), the driven healthcare system must be smart, interoperable, convergent, and reliable to provide pervasive and cost-effective healthcare platforms. Unfortunately, because of higher power consumption and lesser packet delivery rate, achieving interoperable, convergent, and reliable transmission is challenging in connected healthcare. In such a scenario, this paper has fourfold major contributions. The first contribution is the development of a single chip wearable electrocardiogram (ECG) with the support of an analog front end (AFE) chip model (i.e., ADS1292R) for gathering the ECG data to examine the health status of elderly or chronic patients with the IoT-based cyber physical system (CPS). The second proposes a fuzzy-based sustainable, interoperable, and reliable algorithm (FSIRA), which is an intelligent and self-adaptive decision-making approach to prioritize emergency and critical patients in association with the selected parameters for improving healthcare quality at reasonable costs. The third is the proposal of a specific cloud-based architecture for mobile and connected healthcare. The fourth is the identification of the right balance between reliability, packet loss ratio, convergence, latency, interoperability, and throughput to support an adaptive IoMT driven connected healthcare. It is examined and observed that our proposed approaches outperform the conventional techniques by providing high reliability, high convergence, interoperability, and a better foundation to analyze and interpret the accuracy in systems from a medical health aspect. As for the IoMT, an enabled healthcare cloud is the key ingredient on which to focus, as it also faces the big hurdle of less bandwidth, more delay and energy drain. Thus, we propose the mathematical tradeoffs between bandwidth, interoperability, reliability, delay, and energy dissipation for IoMT-oriented smart healthcare over a 6G platform....
With the development of science and technology and the improvement of industrialization, the development of more and more industries has interacted to form many industrial clusters. For the healthy development and safety of various industries, environmental quality monitoring and management in industrial clusters is of utmost importance. Currently, domestic and foreign enterprises and related departments are vigorously developing smart environment platforms. )e purpose of this paper is to design an intelligent environment platform for industrial clusters based on cloud computing technology. )is article first uses the methods of literature research and network investigation to collect relevant literature and research results and organizes statistics on the collected information. )en, through case analysis to study the needs and overview of the construction of smart environment platforms in industrial clusters, it uses the wireless smart sensing technology of the Internet of )ings and the information interaction technology of the Internet to provide data to cloud computing through mobile terminals, and cloud computing provides various types on demand data service. )en, according to the demand analysis of the intelligent environment platform, the functional modules and operation procedures of the intelligent environment platform are designed. )e main monitoring content is water quality testing, air quality testing, garbage disposal and soil quality testing, etc. Finally, this article processes, analyzes, and predicts the detected sampled data through cloud computing. It can also locate and track abnormal data. )rough the curve fitting of the data, the environmental conditions in the area can be predicted. Experiments show that the prediction accuracy rate is as high as 93.8%, which plays an important role in monitoring and preventing environmental pollution....
Today, many products and solutions are provided on the cloud; however, the amount and financial losses due to cloud security incidents illustrate the critical need to do more to protect cloud assets adequately. A gap lies in transferring what cloud and security standards recommend and require to industry practitioners working in the front line. It is of paramount importance to raise awareness about cloud security of these industrial practitioners. Under the guidance of design science paradigm, we introduce a serious game to help participants understand the inherent risks, understand the different roles, and encourage proactive defensive thinking in defending cloud assets. In our game, we designed and implemented an automated evaluator as a novel element. We invite the players to build defense plans and attack plans for which the evaluator calculates success likelihoods. The primary target group is industry practitioners, whereas people with limited background knowledge about cloud security can also participate in and benefit from the game. We design the game and organize several trial runs in an industrial setting. Observations of the trial runs and collected feedback indicate that the game ideas and logic are useful and provide help in raising awareness of cloud security in industry. Our preliminary results share insight into the design of the serious game and are discussed in this paper....
As Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are becoming increasingly popular in the era of the Fourth Industrial Revolution, the orchestration and management of numerous fog devices encounter a scalability problem. In fog computing environments, to embrace various types of computation, cloud virtualization technology is widely used. With virtualization technology, IoT and IIoT tasks can be run on virtual machines or containers, which are able to migrate from one machine to another. However, efficient and scalable orchestration of migrations for mobile users and devices in fog computing environments is not an easy task. Naïve or unmanaged migrations may impinge on the reliability of cloud tasks. In this paper, we propose a scalable fog computing orchestration mechanism for reliable cloud task scheduling. The proposed scalable orchestration mechanism considers live migrations of virtual machines and containers for the edge servers to reduce both cloud task failures and suspended time when a device is disconnected due to mobility. The performance evaluation shows that our proposed fog computing orchestration is scalable while preserving the reliability of cloud tasks....
Loading....